International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795

On The Non-homogeneous Ternary Bi-quadratic Equation

$$
x z(x-z)=y^{4}
$$

S.Vidhyalakshmi ${ }^{1}$, M.A.Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,Trichy-620 002,Tamil Nadu, India.
Email: vidhyasigc@gmail.com
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
Email: mayilgopalan@gmail.com

Abstract

: This paper focuses on finding non-zero distinct integer solutions to the nonhomogeneous ternary bi-quadratic diophantine equation given by $x z(x-z)=y^{4}$. Different sets of integer solutions are presented.

Key words: non-homogeneous bi-quadratic, ternary bi-quadratic ,integer solutions

Notations:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{m}, \mathrm{n}}=\mathrm{n}\left(1+\frac{(\mathrm{n}-1)(\mathrm{m}-2)}{2}\right), \mathrm{P}_{\mathrm{n}}^{3}=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{6}, \mathrm{P}_{\mathrm{n}}^{5}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)}{2} \\
& \mathrm{P}_{\mathrm{n}}^{4}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}, \mathrm{CP}_{\mathrm{n}}^{4}=\frac{\left(2 \mathrm{n}^{3}+\mathrm{n}\right)}{3}, \mathrm{CP}_{\mathrm{n}}^{12}=2 \mathrm{n}^{3}-\mathrm{n}
\end{aligned}
$$

Introduction:
The Diophantine equations are rich in variety and offer an unlimited field for research [1-4]. In particular refer [5-28] for a few problems on Biquadratic equation with 3 unknowns. This paper concerns with yet another interesting Biquadratic Diophantine equation with three variables given by $\mathrm{xz}(\mathrm{x}-\mathrm{z})=\mathrm{y}^{4}$ for determining its infinitely many non-zero distinct integral solutions.

Method of analysis:
The non-homogeneous ternary bi-quadratic equation under consideration is

$$
\begin{equation*}
x z(x-z)=y^{4} \tag{1}
\end{equation*}
$$

International Research Journal of Education and Technology

Introduction of the linear transformations

$$
\begin{equation*}
x=u+v, z=u-v, y=2 v, u \neq v \neq 0 \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\mathrm{u}^{2}=\mathrm{v}^{2}(1+8 \mathrm{v})
$$

which is satisfied by

$$
\mathrm{v}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}, \mathrm{u}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{2}
$$

In view of (2), the corresponding integer solutions to (1) are given by

$$
\begin{equation*}
\mathrm{x}=\mathrm{n}(\mathrm{n}+1)^{2}, \mathrm{z}=\mathrm{n}^{2}(\mathrm{n}+1, \mathrm{y}=\mathrm{n}(\mathrm{n}+1) \tag{3}
\end{equation*}
$$

A few interesting relations among the solutions are exhibited below:
(i). $x+z=6 P_{n}^{4}$
(ii). $x+y+z=12 P_{n}^{3}-4 t_{3, n}$
(iii). $\mathrm{x}+\mathrm{z}-3 \mathrm{CP}_{\mathrm{n}}^{4}$ is a square multiple of 3
(iv). $\mathrm{x}+\mathrm{z}-\mathrm{CP}_{\mathrm{n}}^{12} \equiv 2(\bmod 3)$
(v). $\mathrm{x}+\mathrm{z}-\mathrm{CP}_{\mathrm{n}}^{12}-\mathrm{t}_{8, \mathrm{n}} \equiv 0(\bmod 4)$
(Vi).Each of the following is a perfect square:

$$
\frac{\mathrm{yx}}{\mathrm{z}}, \frac{\mathrm{zx}}{\mathrm{y}}, \frac{\mathrm{zy}}{\mathrm{x}}
$$

(Vii). $x-y=2 P_{n}^{5}$
(Viii). $z-y=6 P_{n-1}^{3}$
(IX). $x^{2}-z^{2}=12 P_{n}^{4} * t_{3, n}$
(X). $x+y+z-3 C P_{n}^{4}-t_{10, n} \equiv 0(\bmod 4)$

It is worth mentioning that, apart from (2), one may employ other choices of linear
transformations leading to different sets of solutions. For simplicity and brevity, we present below a few sets of solutions to (1):

Set 1:

$$
\mathrm{x}=(\mathrm{k}+8)\left(\mathrm{k}^{2}-64\right), \mathrm{z}=(\mathrm{k}-8)\left(\mathrm{k}^{2}-64\right), \mathrm{y}=2\left(\mathrm{k}^{2}-64\right)
$$

Set 2:

$$
\mathrm{x}=(5 \mathrm{k}-1)\left(75 \mathrm{k}^{2}-75 \mathrm{k}+12\right), \mathrm{z}=(5 \mathrm{k}-4)\left(75 \mathrm{k}^{2}-75 \mathrm{k}+12\right), \mathrm{y}=\left(75 \mathrm{k}^{2}-75 \mathrm{k}+12\right)
$$

Set 3:

$$
\mathrm{x}=(\mathrm{k}-128)(\mathrm{k}+128)^{2}, \mathrm{z}=(\mathrm{k}+128)(\mathrm{k}-128)^{2}, \mathrm{y}=4\left(\mathrm{k}^{2}-128^{2}\right)
$$

Set 4:

$$
\mathrm{x}=(3 \mathrm{k}+3)\left(45 \mathrm{k}^{2}+15 \mathrm{k}-30\right), \mathrm{z}=(3 \mathrm{k}-2)\left(45 \mathrm{k}^{2}+15 \mathrm{k}-30\right), \mathrm{y}=\left(45 \mathrm{k}^{2}+15 \mathrm{k}-30\right)
$$

Set 5:

$$
\mathrm{x}=\left(45 \mathrm{k}^{2}+45 \mathrm{k}-20\right)(3 \mathrm{k}+4), \mathrm{z}=\left(45 \mathrm{k}^{2}+45 \mathrm{k}-20\right)(3 \mathrm{k}-1), \mathrm{y}=\left(45 \mathrm{k}^{2}+45 \mathrm{k}-20\right)
$$

Conclusion:
An attempt has been made to obtain non-zero distinct integer solutions to the nonhomogeneous bi-quadratic diophantine equation with three unknowns given by $x z(x-z)=y^{4}$.One may search for other sets of integer solutions to the considered equation as well as other choices of the fourth degree diophantine equations with multi-variables

References:

[1] L.J. Mordell, Diophantine Equations, Academic press, New York, 1969.
[2] R.D. Carmichael, The Theory of numbers and Diophantine Analysis, Dover publications, New York, 1959.
[3] L.E. Dickson, History of theory of Numbers, Diophantine Analysis, Vol.2, Dover publications, New York, 2005.
[4] S.G. Telang, Number Theory, Tata Mc Graw Hill publishing company, New Delhi, 1996.

International Research Journal of Education and Technology Peer Reviewed Journal

ISSN 2581-7795

[5] M.A.Gopalan, and G. Janaki, Integral solutions of ternary quartic equation $x^{2}-y^{2}+x y=z^{4}$, Impact J. Sci. Tech, 2(2), Pp 71-76, 2008.
[6] M.A.Gopalan, and V. Pandichelvi, On ternary biquadratic diophantine equation $x^{2}+k y^{3}=z^{4}$, Pacific- Asian Journal of Mathematics, Volume 2, No.1-2, Pp 57-62, 2008.
[7] M.A.Gopalan, A.Vijayasankar and Manju Somanath, Integral solutions of $x^{2}-y^{2}=z^{4}$, Impact J. Sci. Tech., 2(4), Pp 149-157, 2008.
[8] M.A.Gopalan, and G.Janaki, Observation on $2\left(x^{2}-y^{2}\right)+4 x y=z^{4}$, Acta Ciencia Indica, Volume XXXVM, No.2, Pp 445-448, 2009.
[9] M.A.Gopalan, and R. Anbuselvi, Integral solutions of binary quartic equation $x^{3}+y^{3}=(x-y)^{4}$, Reflections des ERA-JMS, Volume 4, Issue 3, Pp 271-280, 2009.
[10] M.A.Gopalan, Manjusomanath and N. Vanitha, Integral solutions of $x^{2}+x y+y^{2}=\left(k^{2}+3\right)^{n} z^{4}$, Pure and Applied Mathematical Sciences, Volume LXIX, No.(1-2), Pp 149-152, 2009.
[11] M.A.Gopalan, and G.Sangeetha, Integral solutions of ternary biquadratic equation $\left(x^{2}-y^{2}\right)+2 x y=z^{4}$, Antartica J.Math., 7(1), Pp 95-101, 2010.
[12] M.A.Gopalan and A.Vijayashankar, Integral solutions of ternary biquadratic equation $x^{2}+3 y^{2}=z^{4}$, Impact.J.Sci.Tech., Volume 4, No.3, Pp 47-51, 2010.
[13] M.A.Gopalan and G. Janaki, Observations on $3\left(x^{2}-y^{2}\right)+9 x y=z^{4}$, Antartica J.Math., 7(2), Pp 239-245, 2010.
[14] M.A. Gopalan, S. Vidhyalakshmi, S. Devibala, Ternary bi-quadratic Diophantine equation $2^{4 n+3}\left(x^{3}-y^{3}\right)=z^{4}$, Impact J. Sci. Tech, Vol.4(3), 57-60, 2010.
[15] M.A. Gopalan, G. Sangeetha, Integral solutions of ternary non-homogeneous bi-quadratic equation $x^{4}+x^{2}+y^{2}-y=z^{2}+z$, Acta Ciencia Indica, Vol. XXXVIIM, No.4, 799-803, 2011.

Peer Reviewed Journal

ISSN 2581-7795

[16] M.A. Gopalan, S. Vidhyalakshmi, G. Sumathi, Integral solutions of ternary bi-quadratic non-homogeneous equation $(\alpha+1)\left(x^{2}+y^{2}\right)+(2 \alpha+1) x y=z^{4}$, JARCE, Vol.6(2), 97-98, July-December 2012.
[17] M.A. Gopalan, G. Sumathi, S. Vidhyalakshmi, Integral solutions of ternary nonhomogeneous bi-quadratic equation $(2 k+1)\left(x^{2}+y^{2}+x y\right)=z^{4}$, Indian Journal of Engineering, Vol.1(1), 37-39, 2012.
[18] Manju Somanath, G.Sangeetha, and M.A.Gopalan, Integral solutions of a biquadratic equation $x y+\left(k^{2}+1\right) z^{2}=5 w^{4}$, PAJM, Volume 1, Pp 185-190, 2012.
[19] M.A. Gopalan, G. Sumathi, S. Vidhyalakshmi, On the ternary bi-quadratic nonhomogeneous equation $x^{2}+n y^{3}=z^{4}$, Cayley J.Math, Vol.2(2), 169-174, 2013.
[20] M.A.Gopalan , V.Geetha , (2013), Integral solutions of ternary biquadratic equation $x^{2}+$ $13 y^{2}=z^{4}$, IJLRST, Vol 2, issue2, 59-61
[21] M.A.Gopalan ,S. Vidhyalakshmi ,A. Kavitha , (2013), Integral points on the biquadratic equation $(x+y+z)^{3}=z^{2}\left(3 x y-x^{2}-y^{2}\right)$, IJMSEA,Vol 7, No.1, 81-84
[22] A. Vijayasankar, M.A. Gopalan, V. Kiruthika, On the bi-quadratic Diophantine equation with three unknowns $7\left(x^{2}-y^{2}\right)+x+y=8 z^{4}$, International Journal of Advanced Scientific and Technical Research, Issue 8, Volume 1, 52-57, January-February 2018.
[23] Shreemathi Adiga,N.Anusheela,M.A.Gopalan,Non-Homogeneous Bi-Quadratic EquationWith Three Unknowns $\mathrm{x}+3 \mathrm{xy}+\mathrm{y}=\mathrm{z}$,Vol.7,Issue.8,Version -3,pp.26-29,2018
[24] S.Vidhyalakshmi, M.A. Gopalan, S. Aarthy Thangam and Ozer, O., On ternary biquadratic diophantine equation $11\left(x^{2}-y^{2}\right)+3(x+y)=10 z^{4}$, NNTDM, Volume 25, No.3, Pp 65-71, 2019. [25] A.Vijayasankar, Sharadha Kumar, M.A.Gopalan, "A Search For Integer Solutions To Ternary Bi-Quadratic Equation $(a+1)\left(x^{2}+y^{2}\right)-(2 a+1) x y=\left[p^{2}+(4 a+3) q^{2}\right] z^{4}$ ", EPRA(IJMR), 5(12), Pp: 26-32, December 2019.
[26] A.Vijayasankar, Sharadha Kumar, M.A.Gopalan, "On Non-Homogeneous Ternary BiQuadratic Equation $x^{2}+7 x y+y^{2}=z^{4} "$, Compliance Engineering Journal, 11(3), $\mathrm{Pp}: 111-$ 114, 2020.

International Research Journal of Education and Technology Peer Reviewed Journal
 ISSN 2581-7795

[27] S.Vidhyalakshmi, M.A.Gopalan, On The Non-Homogeneous Ternary Bi-quadratic Equation $\mathrm{x} \mathrm{z}(\mathrm{x}+\mathrm{z})=2 \mathrm{y}^{4}$, IJRPR,Vol,3 ,Issue7,pp.3465-3469,2022
[28]] S.Vidhyalakshmi, M.A.Gopalan, On The Non-Homogeneous Ternary Bi-quadratic Equation $8 \mathrm{xz}(\mathrm{x}+\mathrm{z})=15 \mathrm{y}^{4}$,IRJMETS,Vol, 4 ,Issue 7,pp.3623-3625,2022

